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The impact of habitat fragmentation
and social structure on the population
genetics of roe deer (Capreolus capreolus L.)
in Central Europe

MAGNUS WANG* & ARND SCHREIBER
Zoologisches Institut I, Universitdt Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany

Nine out of 57 bovine and caprine microsatellites investigated have proved polymorphic in roe deer
populations from Central Europe. The polymorphism of four to nine microsatellites (with two to 16
alleles each) has been screened in 492 roe deer from 27 sample locations in Germany, the
Netherlands and France, and 10 allozyme loci have been investigated in 118 roe deer from
Germany. These studies have revealed a genetically homogeneous population, but with a local
scatter of allele frequencies. The mean genetic distance among sample pairs, and the overall fixation
index for the 27 population samples were D = 0.1638 and Gt = 0.0972 for four microsatellite loci,
and D = 0.0598 and Ggt = 0.1459 for 10 allozyme loci. No isolation-by-distance was observed. Roe
deer from isolated habitats could be distinguished by various measures of genetic variability. The
expected heterozygosity and the allelic diversity were higher in male than in female roe deer, but
mean genetic distances and fixation indices were higher in females. The fixation indices of pairs of
adjacent samples, and the genetic distance among these samples correlated highly significantly with
the density of human settlement, measured by the percentage of land surface covered by roads and
villages. The utility of allozymes and microsatellites for population genetic studies in cervids are
compared.
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Introduction

Although the roe deer, Capreolus capreolus, is the largest
free-living mammal in many regions throughout Eur-
ope, and a species of major importance in hunting, the
understanding of its evolutionary genetics lags behind
the insights gained for other cervids, especially the
wapiti/red deer superspecies (Cervus elaphus), the moose
(Alces alces) and the white-tailed deer (Odocoileus
virginianus), which, to some extent, is the Nearctic
ecological replacement form of the roe (Dratch &
Pemberton, 1992; Pemberton & Slate, 1998). Several
studies of allozyme variants in roe deer, mainly in
populations in south-east Central Europe, showed it to
be one of the most heterozygous and polymorphic
cervid species (Hartl ef al., 1991, 1993). The few studies
of DNA variability have been confined to smaller
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population samples (mt-DNA: Jaeger ef al., 1992;
Randi et al., 1998; Wiehler & Tiedemann, 1998; finger-
prints: Morsch & Leibenguth, 1993; Volmer et al.,
1995). Pemberton & Slate (1998) screened four poly-
morphic microsatellites in an island population from
Norway. No large-scale polymorphism screening of
German roe deer populations has been undertaken at
either the protein or the DNA level.

The roe deer is abundant throughout the European
temperate zone. Originally favouring the early regrowth
stages of natural forest succession, it thrives in forests
opened by silviculture, but is also found in intensively
cultivated agricultural areas. The ecology and social
behaviour of the roe deer are fairly well-known
(Strandgaard, 1972; Ellenberg, 1978; Stubbe, 1990;
Kurt, 1991). Many aspects of social organization and
population ecology, including those which might be
relevant for population genetics too, differ among
regional populations using different habitats. Stable
social systems, e.g. matrilineal clans, prevail in forests,
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whereas unstable social structures, e.g. aggregations, are
commonly discerned in field habitats (Kurt, 1991). Kurt
et al. (1993) claimed to have found significantly different
Fis values between roe deer of the ‘forest’” and ‘field’
ecotypes. Moreover, intensive hunting pressure was
thought to augment heterozygosity by disrupting social
groups. However, Hartl ef al. (1993) observed no
elevated genetic distances when field- and forest-dwell-
ing roe deer were compared. In general, roe deer are
rather philopatric and maintain small home ranges for
many years (Kurt, 1991). Dispersal is maximal in the
age-classes of one or two years, and is sex-biased, with
males tending to disperse earlier and further than
females (Ellenberg, 1978; Stubbe, 1990; Kurt, 1991).
The impact of sex-specific dispersal on the population
genetics of a species not only throws light on a species’s
population biology, but also complicates the interpret-
ation of allelic evolution in fragmented populations. The
latter aim is of primary interest for wildlife management,
as discussed for red deer (Schreiber et al., 1994). Few
publications refer to the genetic consequences of habitat
fragmentation on roe deer: Wehner ez al. (1991) found
reduced allozyme variability in one of three populations
studied in south-west Germany which had lived in
isolation for 60 years, but even lower variability was
observed in one seemingly non-isolated population
sample. Fakler & Schreiber (1997) reported low genetic
variability in the recently founded population of a Dutch
nature reserve surrounded by city agglomerations.

The present study addresses the population structure
of 27 roe deer population samples from Germany, the
Netherlands and France, including 492 individuals.
Microsatellite analysis compares samples using these
highly polymorphic markers, which nevertheless permit
the identification of homozygous and heterozygous
genotypes. Ten allozyme loci were additionally screened
in six population samples from which frozen tissue was
available. We demonstrate an overall population
homogeneity across Central Europe, with local scatter
of allele frequencies. The genetic distinction of local
populations correlated significantly with the intensity of
human land-use. The subsamples of male and female roe
deer differed, probably reflecting different space occu-
pation of bucks and does. The utility of microsatellites
and allozymes for detecting isolated roe deer popula-
tions is discussed.

Methods

Populations examined

The total sample consisted of 492 roe deer from 27
collection sites (Fig. 1, Table 1). The specimens from
the Vosges Mountains (VOS) were collected during

1980-90. Samples from Diisseldorf (DUS) and Pader-
born (PAD) were taken in 1993 and 1994, and the other
samples from 1996 to 2000.

Several sampled populations are isolated from gen-
etic exchange or have been artificially created: The 3400
hectares of the Amsterdamse Waterleidingduinen
(AWD), North Holland, were stocked in 1952, with
10-12 roe deer transferred from the eastern Nether-
lands. For population status and development, see
Fakler & Schreiber (1997). Flevoland (FLE), north-
central Netherlands, was colonized spontancously by
an unknown number of founders when this polder area
became dry in 1959. BR2, located at about 4 km from
the non-isolated site BR1, denotes a park in Bremen
city, which has been isolated since about 1980 and
contains about 70 roes (H. Tempelmann, personal
communication). Riigen Island (927 km?) in the Baltic
Sea (RUG) is separated from the mainland by a
1-2 km broad strait (A. Siefke, personal communica-
tion). BIE and KUH refer to the nature reserves of
Biedensand (525 hectares) and Kiihkopf-Knoblochsaue
(2100 hectares), Hessen, in the flood plains of the
Rhine; they are semi-isolated, being surrounded by
the Rhine and by old meanders sequestered from the
Rhine. The samples from VOS originated from male
roe deer trophies of a population which had passed

[ Mcmso7 122
Il McM507 124

Fig. 1 Collection sites of 27 roe deer population samples
(N = 492), and the respective allele frequencies at the micro-
satellite McM507.
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Table 1 Locations, and sizes, of 27

roe deer population samples from Population samples N Collected by
Germany, the Netherlands and France Dutch and North German lowlands
1. Amsterdamse Waterleiding- 11 H. Verdonk
duinen (AWD)
2. Flevoland (FLE) 36 H. Verdonk
3. Bremen 1 (BR1) 12 H. Tempelmann
4. Bremen 2 (BR2) 18 H. Tempelmann
5. Dannhorst (DAN) 18 G. Jacobj
6. Horst (HOR) 8 Prof. G. Vauk
7. Ahrensbok (AHR) 19 E. Heisinger
8. Riigen (RUG) 18 Prof. A. Siefke
9. Diisseldorf (DUS) 30 Dr W. Lutz
10. Paderborn (PAD) 9 Dr W. Lutz
11. Uckermark (UCK) 18 Prof. C. Stubbe
12. Schorfheide (SCH) 16 Prof. C. Stubbe
Central European highlands
13. Biedenkopf (BIK) 26 K. Miiller
14. Westerwald (WES) 24 H. Wisser
15. Kiithkopf (KUH) 23 H. Gonnermann
16. Biedensand (BIE) 17 K. Velbecker
17. Miickenloch (MUK) 14 W. Ruf
18. Vosges (VOS) 16 G. Lang
19. Landau (LAN) 39 K. Burg
20. Boblingen (BOB) 21 U. Himmelmann
21. Miinsingen (MUN) 10 E. Hordler
22. Badenweiler (BAD) 13 W. Huber
23. Oberaufsefl (OBE) 19 Dr H. Kilias
24. Trebgast (TRE) 9 W. Steinbriick
25. Gefrees (GEF) 16 Dr H. Kilias
26. Fichtelberg (FIB) 8 Dr H. Kilias
27. Bayerischer Wald (BAY) 24 A. Reinelt

bottlenecks prior to the early 1980s (G. Lang, personal
communication). Roe deer from Miinsingen (MUN)
were culled in a fenced military training area; the fence
has probably become penetrable over the years
(E. Hordler, personal communication).

Sampling

Samples from liver, spleen, kidney or muscle tissue were
taken from hunted roe deer and conserved at either
—70°C or at room temperature in 96% ethanol. The
samples DUS and PAD were received as dried tissue.
Bone and antler samples from VOS and RUG were
stored at room temperature.

Microsatellites

Genomic DNA was extracted with the Qiamp tissue kit
(Qiagen). The DNA extraction from bone and antler
powder followed a modification of Launhardt et al.
(1998). PCR was carried out in an reaction volume of
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20 puL, using 50 ng of DNA, 10 uM primer (applying
the primers listed in Table 2), 100 uM dNTP, and 2 U
Taq polymerase. Five PCR cycles, as follows, were run
after initial denaturation at 94°C for 2 min: 45 s at
94°C; 45 s at the annealing temperature of the primer
(Table 2) plus 4°C; 45 s at 72°C. Another 30 cycles
comprised the following steps: 45 s at 94°C; 45 s at the
annealing temperature of the primer minus 1°C; 45 s at
72°C; and finally 2 min at 72°C. The primers McM505
and McM507 were amplified with a stepdown PCR as
reported by Hulme et al. (1995). Amplicons were
separated in an 8% polyacrylamide gel in an ALF
Express sequencer.

Allozymes

Allozyme loci were assayed from homogenized liver
tissue as presented before (Fakler & Schreiber, 1997).
The alleles were designated by their electrophoretic
mobilities in relation to the mobility of the most
frequent variant which was defined as 100%.
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Table 2 Lengths, allele numbers, and expected heterozygosities (H,) of nine microsatellites used in this study and the

annealing temperatures (7,) of their primers

Locus Size range (bp) T. (°C) No. of alleles H. Reference
ILSTS005 156-190 55 10 0.751 Kemp et al. (1995)
ILSTS008 178-188 58 6 0.726 Kemp et al. (1995)
ILSTS058 142-188 55 16 0.875 Kemp et al. (1995)
OarAEI129 156-168 63 7 0.750 Penty et al. (1993)
OarCP26 134-138 63 3 0.718 Ede et al. (1995)
OarHHS51 126-160 61 9 0.493 Pierson et al. (1994)
McMI131 82-112 58 10 0.744 Hulme et al. (1995)
McM505 110-134 60-52 9 0.829 Hulme et al. (1995)
McM507 122-124 60-52 2 0.497 Hulme et al. (1995)
Statistics deer DNA, and nine proved polymorphic (/LSTS005,

Recently, a number of statistics for the analysis of
microsatellite data have been developed, assuming a
stepwise mutation model (SMM). The proposed meas-
ures were designed for phylogenetic analyses, rating
allele size as an evolutionary character. However, when
divergence is low, as in intraspecific population compar-
isons, methods based on the infinite-allele model were
considered appropriate (Takezaki & Nei, 1996). Addi-
tionally, the SMM is not compatible with numerous
observations on microsatellite evolution (Wierdl et al.,
1997; Colson & Goldstein, 1999). Therefore, we used
standard measures (i.e. Nei distances, Ggr-values, etc.)
for both allozyme and microsatellite data. For the
analysis of the among-population component of genetic
differentiation, fixation indices (Ggt) were corrected for
small sample size, according to Nei & Chesser (1983).
The hierarchical gene diversity analysis followed Nei
(1973). Unbiased genetic distances were derived from the
allele frequencies according to Nei (1978). Nei distances
and fixation indices were correlated with geographical
distances using Mantel’s test (Mantel, 1967), applying
the software package NTsys/pc 2.02f (Rohlf, 1998). Data
transformation for this test, to adjust the different scales
of geographical and genetic distances, followed Sokal
(1979). y*-tests of Hardy-Weinberg equilibrium used
the Bonferroni and Yates corrections. Heterogeneity
analysis of allele frequencies, testing deviations from
hypothetical metapopulation expectations, followed
Workman & Niswander (1970). Assignment indices
(Favre et al., 1997) were used to compare the extent of
male vs. female immigration into populations.

Results

Genetic variability

From 57 bovine and caprine microsatellite primers
tested in four roe deer, 32 produced amplicons with roe

ILSTS008, ILSTS058, OarAEI129, OarCP26, Oar-
HH51, McM131, McM505 and McM507). In order to
examine the variability of these nine microsatellites,
seven population samples, AWD, FLE, WES, KUH,
BIE, MUN and BAD, were screened in the first part of
the analysis. The number of alleles and the expected
heterozygosities found are listed in Table 2. In the
second part of the study, we screened all roe deer
samples collected with four primers, amplifying from
two to 16 alleles each (McM507: two alleles; OarCP26:
three alleles; OarAEI29: seven alleles; ILSTS058: 16
alleles). Allele frequencies (p), polymorphism (P),
expected heterozygosities (H.), and the allele numbers
per locus (A4.D.) obtained for each sample are listed in
Table 3; the mean values amounted to P = 0.990,
H,=0.545 and 4.D. = 4.04.

Six allozyme loci, out of 10 (Ak-1*, Ak-2*%, Dia-1%*,
Dia-2%, Me-1*, Me-2*, Mpi*, Pgm-1*, Pgm-2* and Sod*)
screened in 118 roe deer from WES, KUH, BIE, LAN,
GEF and OBE, proved polymorphic, having two (Ak-1*,
Dia-2*%, Me-2*%, Pgm-1%*) or three alleles (Mpi*, Pgm-2%),
respectively. Mean P, H, and A.D. for all 10 allozyme
loci were P =0.583, H, = 0.213 and A4.D. = 1.63. The
corresponding values for single population samples
and the allele frequencies are listed in Table 4.

Population structure

Neither the geographical distribution of microsatellite
or protein alleles nor their frequencies correlated with
the geographical arrangement of the collection sites.
Nor did a principal component analysis (PCA, Fig. 2)
of allele frequencies reveal any regional groupings (with
the weights of PC1, PC2 and PC3 of 14, 13 and 10%
in microsatellites and 41, 31 and 15% in allozymes,
respectively). Mean unbiased genetic distances and
fixation indices were calculated for each sample, by
averaging D or Ggst values over all possible pairings
of a respective sample (Table 3). The overall mean
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0.737 0.263 0.632 0.368 0.658 0.342 0.842 0.158 0.000 0.895 0.105 0.632 0.368 0.000 0.600 0.222
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microsatellite Nei distance was D = 0.1638 and the
overall fixation index for all populations was
Gst = 0.0972. The mean allozyme Nei distance was
D = 0.0584, and overall Ggt amounted to Gst = 0.1459.
Using a Mantel test, neither the fixation indices nor the
genetic distances from microsatellite or allozyme data
correlated with the geographical distances separating the

sample sites (microsatellite Gg: r = —0.076, t = —1.015,
P = 0.8650; microsatellite D: r = —0.064, t = -0.871,
P =0.8082; allozyme Gst: r=-0.289, t=-1.208,
P =0.8601; allozyme D: r=-0.244, t=-1.028,

P =0.8480). A hierarchical gene diversity analysis
divided the overall Ggr-value into percentages, which
explain the influence of local and regional groupings on
population subdivision. The following sample groups
were defined for microsatellites: Netherlands (AWD,
FLE), north German lowlands (DAN, HOR, AHR,
BRI, BR2), east German lowlands (UCK, SCH, RUG),
central Germany (DUS, PAD, BIK, WES), south-west
German highlands and Rhine basin (KUH, BIE, MUK,
VOS, LAN, BAD, BOB, MUN), and Bavaria (OBE,
GEF, TRE, FIB, BAY). Only 27.2% (Gcscr) = 0.0264)
of the overall genetic differentiation (Gst = 0.0972) was
due to these regional groupings. In conclusion, 72.8% of
Gst was explained by small-scale population diversity,
i.e. on the spatial level of local samples. For allozymes,
the groupings for the hierarchical gene diversity analysis
were: Oberfranken (OBE, GEF), Rhine basin (KUH,
BIE, LAN) and Westerwald (WES). Of the overall gene
diversity, 24.8% (Gcsery = 0.0362) was caused by allo-
zyme variation between these regional groups; thus
75.2% remains for the small-scale variation on the level
of single samples.

Significant deviations from the Hardy—Weinberg
expectations, expressed by a deficiency of heterozygotes,
were revealed occasionally in y’-tests comparing the
frequencies of homo- and heterozygotes: FLE (ILS-
TS058: 4> =18.56, df. =1, P=0.0002); BIK
(OarAEI29: y* =645, df.=1, P=0.0444); KUH
(ILSTS058: y*=17.40, d.f. =1, P=0.0003); and
WES (Me-2*: 7> = 16.48, d.f. = 1, P = 0.0003).

Sex-specific genetic population structure

In 13 population samples, those comprising at least four
males and four females, the microsatellite data were
analysed separately for the sexes (populations FLE,
DUS, UCK, BIK, WES, KUH, BIE, MUK, LAN,
BOB, GEF, OBE, BAY). These test groups included 145
males and 157 females. In males the mean polymorph-
ism, expected heterozygosity and allelic diversity were
P =1.000, H. = 0.579 and A.D. = 3.976, and in females
P=0.991, H.=0.554 and A.D.=3.707. Assignment
indices, calculated for males and females (see Table 5),
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4

Fig. 2 Principal component analyses of the allele frequencies of 27 roe deer population samples analysed for four microsatellite loci
(a), and of six samples screened for 10 allozyme loci (b). The numbers (a) and abbreviations (b) refer to the samples defined in

Table 1.

Table 5 Assignment indices (A1, Favre et al., 1997)
calculated from microsatellite data for male and female roe
deer of 13 population samples from Central Europe

Mean Al. (£ SE)

Population

samples Males Females
DUS 0,12 (0,24) -0,39 (0,30)
UCK -0,32 (0,32) 0,20 (0,31)
BIK -0,14 (0,20) 0,17 (0,12)
BAY 0,07 (0,08) -0,03 (0,12)
BIE -0,43 (0,20) 0,23 (0,18)
MUK -0,01 (0,12) 0,01 (0,38)
BOB —-0,09 (0,15) 0,10 (0,14)
LAN 0,00 (0,09) 0,00 (0,14)
OBE 0,08 (0,32) -0,06 (0,22)
KUH —-0,06 (0,15) 0,02 (0,14)
GEF -0,05 (0,20) 0,08 (0,27)
FLE —-0,45 (0,22) 0,05 (0,10)
WES —-0,04 (0,19) 0,22 (0,22)

were significantly lower in bucks, indicating a higher
share of male dispersal among our population samples
(Mann—Whitney U-test: U=38; N=13; P=0.0171).
The sexes also differed, almost significantly (Friedeman
ANOVA: 7> =3.769, N =13, d.f. = 1, P = 0.052), in the
mean genetic distances between pairs of single-sex
population samples. The mean among-sample distance
value was D =0.1377 in males, and D = 0.1807 in
females. The total fixation indices differed markedly
between the sexes too (Gst = 0.0695 in males and
Gst = 0.1034 in females), as did the amount of popu-
lation subdivision into local or regional groupings

(hierarchical gene diversity analysis of the groups
defined above, but including only the 13 population
samples mentioned): in males, 86.7% of the total gene
diversity was due to small-scale variation on the level of
single samples, and in females 94.5%. Heterogeneity
analyses of allele frequencies, testing if male and female
samples from one sample site belong to the same
population, revealed significant differences between
sexes in three cases: BIK (N, = 14, Ny = 12; OarCP26
¥ =6.03, d.f. =1, P=0.0425; OarAEI29 > =17.86,
d.f. =2, P=0.0005), BOB (N,, =11, Ny=10; ILS-
TS058: 7> =9.10, d.f. =2, P=0.0424) and MUK
(Nm=7, Ny=7, OarAEI29: »*=929, df =1,
P =0.0093). Limited availability of undenatured frozen
tissue samples prohibited the separate analysis of
allozyme data from males and females.

Population isolation

Certain population samples, chiefly those from more or
less isolated sites, were distinguished: remarkably low
microsatellite variability (see Table 3) characterized the
roe deer from BR2 (H. and 4.D.), RUG (4.D.) and
PAD (P, H. and A.D.). The allele frequencies of primer
locus OarAEI129 differed markedly from those of
neighbouring sites in the sample from city park BR2,
the nature reserve BIE, the island of Riigen, VOS and
PAD. The PCA of allele frequencies separated roe deer
from BR2 and MUN from the remaining samples
(Fig. 2). The separation is obvious from PC2, which is
chiefly determined by the allele frequencies of the
OarCP26 locus (respective weights: allele 134: 74.9%,
allele 136: 87.0%, allele 138: 57.1%). High mean genetic
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distances (Table 3), compared with the mean value
calculated from microsatellite data (D = 0.1638), were
observed for the samples BR2 (D = 0.5074), RUG
(D =0.2275), BIE (D =0.2202), and MUN (D=
0.2254). An extremely high mean microsatellite fixation
index, of Gst = 0.1694, was observed only for BR2. For
allozymes, the sample BIE showed a markedly higher
mean value of Ggt = 0.172 than did the others, with
values ranging from Ggp=0.057 to Ggt = 0.098
(Table 4). High allozymic Nei distances distinguished
the roe deer from BIE (D = 0.1232) from the other
populations (distances: D =0.0197 to D = 0.0678).
PCA of allozymic allele frequencies likewise separated
the BIE sample (see Fig. 2), mainly due to the alleles
at the Pgm-I1* locus, whose weights were 94.9% each
(PC 2), followed by the alleles of Me-2*, with a weight of
83.7%. The frequency of allele Pgm-1*-16, p = 0.900,
was much higher at BIE than at all other sample sites
(p =0.000 to p=0.125). The allele Me-2* 123 was
more frequent at BIE (p = 0.682) than in all other
samples (p = 0.156 to p = 0.523).

In order to test if Ggr-fixation indices, or mean Nei
distances between samples, correlated with urbaniza-
tion, microsatellite data for six different geographical
groupings of population samples were compared, con-
taining sample sites separated by about 60 km ecach
(except for the grouping BR1 and BR2, separated by
only 4 km). The Gsr-values and Nei distances varied
markedly between the groups: BR1 and BR2: Ggr =
0.2121, mean D = 0.6865; HOR and AHR: Ggsr=
0.0328, mean D =0.0862; UCK and SCH: Ggr =
0.0000, mean D = 0.0000; BIK and WES: Gst = 0.0565,
mean D = 0.1528; KUH, BIE and MUK: Ggt = 0.0983,
mean D = 0.2429; OBE, TRE and GEF: Gst = 0.0311,
mean D = 0.0721. The fixation indices and genetic
distances correlated significantly with urbanization in
the habitats of roe deer (Spearman rank test for both
Gst and D: N=6, R=0.9856, t(n — 2)=11.662,
P =0.0003, see Fig. 3), which was calculated from a
computer satellite atlas (D-Sat, Scout Systems GmbH,
Miinchen 1998) by quantifying the percentage areas
which houses, villages and streets occupied within a
square of 60 x 60 km? around the sample sites.

Discussion

Genetic variability

From 57 bovine and caprine microsatellite primers
tested in four animals, 32 (56%) amplified roe deer
DNA and nine of these (28%) produced polymorphic
microsatellite markers in roe deer, with an average of
eight alleles. Allelic diversity seems considerable higher
than in other cervids (e.g. Wilson et al., 1997; Marshall
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Fig. 3 The correlation (Spearman rank test for both Ggr and
D: N=6,R =0.9856, t (n—2) = 11.662, P = 0.0003) between
mean genetic distances (D) and fixation indices (Gst) of local
groups of roe deer populations (separated by about 60 km or
less) with the percentage of the urbanized area, including
villages and roads within a perimeter of about 60 x 60 km?>.
Population groups are: 1, BR1 and BR2; 2, KUH, BIE and
MUK; 3, BIK and WES; 4, HOR and AHR; 5, OBE, TRE and
GEF; and 6, SCH and UCK.

et al., 1998; Pemberton & Slate, 1998). However, such
comparisons may be misleading when markers of
different variability are selected.

The roe deer studied by us seem to exhibit similar
allozyme variability measures as did the roe deer from
Switzerland, Austria, Slovenia, Slovakia, Bulgaria,
France, Italy, and England studied by Hartl & Reimoser
(1988), Hartl et al. (1993), Lorenzini et al. (1993) and
Hewison (1995). Clearly, the overall variability measures
of this investigation surpass those reported by previous
studies (ranging from P =0.178 to P =0.133, and
H.=0.059 to H.=0.032), but this is because we
screened only a few of the proteins known to be
monomorphic in roe deer.

Population structure

Principle component analysis of allele frequencies,
among-sample genetic distances and fixation indices
of both microsatellite and allozyme data confirmed
that there is a genetically rather homogencous roe deer
population throughout Central Europe (cf. Fig. 1).
There is no evidence from recent taxonomic revisions
that our study areas were the home of different roe
deer subspecies or contained a contact belt of popu-
lations having expanded from different Pleistocene
refugia (Lehman & Ségesser, 1986; Stubbe, 1990).
Thus, our genetic data agree with the taxonomy
and phylogeography of Central European roe deer.
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Allozyme and microsatellite differentiation did not
correlate with the geographical distances between local
samples also; thus isolation-by-distance is not evident
in the study area.

Although significant regional differentiation has not
been found, allele frequencies, even between adjacent
population samples, still showed a small-scale scatter.
Hierarchical gene diversity analysis confirmed a low
level of population subdivision, predominantly at the
local scale. In view of the roe deer’s phylogeographic
homogeneity throughout Central Europe, this scatter
might be explained by ecological and behavioural
determinants specific to individual populations. The
general philopatry of roe deer, characterized by short
dispersal distances of usually less than 5 km, and small
home ranges, which may be stable for a lifetime
(Stubbe, 1990), probably support small-scale genetic
differentiation. Moreover, the translocation of roe deer
for hunting purposes, or a temporal rather than spatial
stratification of genotype distribution could be consid-
ered. However, there are no indications that our
sample populations have been affected by transloca-
tions, except for the Amsterdamse WaterleidingDuinen
(cf. above). Few cases of roe deer introductions or
translocations for hunting purposes have been reported
from Germany, including a very limited number of
animals being introduced mainly in the beginning 20th
century (Beninde, 1941; Niethammer, 1963; Stubbe,
1990). Beninde (1941) recorded only four successful
translocations out of 32 attempts comprising only four
to five specimens each; none of these were close to our
collection sites. Considering the abundance of roe
deer throughout Central Europe, with an annual
German hunting bag of just over one million speci-
mens, a few successfully translocated specimens cannot
have significantly altered the natural genetic population
patterns.

Social system and genetic differentiation

When microsatellite data were analysed separately for
bucks and does, an (insignificantly) lower variability
was observed in females (P = 1.000, H.=0.579 and
A.D.=3.976 in males and P =0.991, H. = 0.554 and
A.D.=3.707 in females). Mean genetic distances
between local subsamples of females surpassed those
between male subsamples almost significantly (mean
D =0.1377 in males against D = 0.1807 in females).
The female among-population variability (Ggr =
0.1034) surpassed the male value (Gst = 0.0695) too.
Females exhibited a higher among-sample differenti-
ation (94.5% of total differentiation) at the small, local
scale than did males (86.7%). Moreover, assignment
indices indicated a higher share of genetically distinc-

tive males in local samples. These results match the sex
bias of roe deer dispersal: males disperse further than
females, and occupy larger home ranges (Ellenberg,
1978; Stubbe, 1990; Kurt, 1991). Additionally, twice
as many males as females disperse (Ellenberg, 1978).
Male dispersal increases with population density and
resource scarcity, promoted by the presence of adult
males (Strandgaard, 1972; Hewison & Gaillard, 1996),
whereas conversely female dispersal decreases when
resource competition in neighbouring clans is high
(Ellenberg, 1978). In conclusion, our population sam-
ples may have contained genetically more heterogene-
ous male subsamples, based on more dispersers than
the female subsamples. Sex-biased dispersal may also
explain the significant allele frequency differences
between males and females in three (BIK, BOB,
MUK) of the 13 population samples.

This effect might be generally typical for samples of
species with sex-biased (i.e. male-biased) dispersal, but it
has been considered only rarely in sampling schemes for
mapping genetic variation. Schreiber ef al. (1994)
observed the influence of sex-biased dispersal on the
genotype and frequency distribution of the transferrin
polymorphism in red deer. In their study population,
mean dispersal distances of 19 km in males and 2.55 km
in females had produced a patchy spatial mosaic of
transferrin genotypes, and a Wahlund effect (heterozy-
gote deficiency) within a forested hunting reserve of
2600 hectares of continuous, unrestricted habitat. The
sex bias in dispersal distances appears to be lower in roe
deer than in red deer: From raw data of Ellenberg (1978)
we estimated mean dispersal distances of 2.61 km for
male, and of 2.28 km for female roe deer of two years of
age, or more. Heterozygote deficiency was confined to
single microsatellites in only three population samples.
Gis values of microsatellites and allozymes (Tables 4
and 5) did not indicate a general heterozygote deficiency
either. Consequently, sex-biased dispersal does not seem
to cause more than marginal Wahlund effects in roe
deer, which is thus different from red deer (Schreiber
et al., 1994).

Possibly, sex-biased dispersal might produce sex-
specific population genetic patterns in white-tailed deer
(Odocoileus virginianus), too. Manlove et al. (1975) and
Ramsey et al. (1979) found genotype frequencies to
differ between males and females, but Ramsey et al.
(1979) attributed these differences to sex-different selec-
tion pressures in the social hierarchy. Purdue et al.
(2000) found differently fixed mtDNA-haplotypes
between white-tailed deer populations separated by only
50 km, indicating different maternal lineages, while
biparently inherited allozymes revealed no differentia-
tion. Purdue et al. (2000) explain this difference with the
male-biased dispersal of the white-tailed deer.
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Habitat fragmentation

Urbanization correlated highly significantly with the
mean genetic distances among adjacent population
samples, and with their fixation indices. This correlation
followed an exponential function (Fig. 3). Specifically,
the city park population in Bremen (BR2) displayed a
remarkably reduced microsatellite variability of 44.3
and 39.4% of the mean allelic diversity and expected
heterozygosity of all samples, and the highest mean
D- and Ggr-values, when compared to the remaining
populations; PCA supported this population’s genetic
distinction. The approximately 70 roe deer from this
urban site have been effectively isolated for 15-20 years
(H. Tempelmann, personal communication). In the
sample RUG, isolation effects were evident only from
reduced allelic diversity (31.9% of the mean) and from
the mean Nei’s distances. The large size of Riigen Island
(927 km?) and the observation of occasional exchange
of animals with the mainland through a 1-2 km broad
seaway (A. Siefke, personal communication) probably
decrease the stringency of isolation. Fakler (1999)
described reduced RAPD-DNA variability of badgers
(Meles meles) from Riigen Island, compared with
mainland badgers. Roe deer from the nature reserve
Biedensand (BIE), comprising 525 ha, were distin-
guished by elevated genetic distances (microsatellites
and allozymes), fixation indices (allozymes), and by
PCA (allozymes). There are only about 50 hectares of
forest in this nature reserve, surrounded by flood plain
meadows, fields, and reed beds, and large parts of it are
annually flooded for several weeks in spring. The genetic
distinction of the roe deer from BR2, RUG and BIE
is also supported by markedly deviating microsatellite
and allozyme (only BIE) allele frequencies, relative to
adjacent sites (Tables 3 and 4). The reduced genetic
variability of roe deer from PAD (P =0.750,
H.=0.380, and A4.D. = 2.50) does not correlate with
any recognizable habitat isolation.

The documented effects of habitat isolation need not
necessarily imply the consequences of prolonged inbreed-
ing. Rather, a founder effect might have led to initially
only few genetic lineages. If so, their reduced variability
measures are consistent with the intra-lineage variation
of single demes of larger, non-isolated populations.

Microsatellites and allozymes as population
markers

The allozyme and microsatellite analyses supplied non-
identical, though largely overlapping, information.
Microsatellites exhibited far higher allelic diversity and
heterozygosity than did allozymes. Allele numbers
ranged between two to 16 per microsatellite locus in
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roe deer, but the 10 allozyme loci investigated in six
population samples included just six bi- or triallelic
polymorphisms. In red deer (Cervus elaphus) Marshall
et al. (1998) found six to 13 alleles in nine microsatel-
lites, whereas only two alleles were observed in three
polymorphic proteins.

In the present microsatellite study, genetic distance
values emerged as the most sensitive indicator for
detecting population isolation. Allelic diversity, and
finally expected heterozygosities and fixation indices,
came next. Markers with few alleles (e.g. McM507, two
alleles) displayed an overall population homogeneity
throughout the study area. Isolated populations were
detected only by polyallelic markers, such as the seven-
allele locus OarAE129. Apparently, the greater micro-
satellite heterozygosity is less sensitive to mild genetic
drift (or Wahlund effects) than are allozymic heterozyg-
osities. Likewise, Barker et al. (1997) found that bottle-
necks chiefly increased allozyme genetic distances,
whereas in microsatellites their main effect was to
reduce allelic diversity. As rare alleles are lost preferen-
tially, heterozygosity and genetic distance values were
less affected (Barker et al., 1997). Also in our study,
population subdivision was best reflected by fixation
indices derived from the more sensitive allozymic
heterozygosity measures. Genetic distances derived from
microsatellites and from allozymes seem to resolve
population structure equally well.
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